Устройство и работа термометра

Самая важная информация по теме: "Устройство и работа термометра" с выводами от профессионалов. В случае возникновения вопросов и при необходимости актуализации данных вы можете обратиться к дежурному юристу.

Жидкостный термометр технический

Жидкостный термометр — это прибор для измерения температуры технологических процессов при помощи жидкости, которая реагирует на изменение температуры. Жидкостные термометры хорошо всем известны в быту: для измерения комнатной температуры или температуры человеческого тела.

Жидкостные термометры состоят из пяти принципиальных частей, это: шарик термометра, жидкость, капиллярная трубка, перепускная камера, и шкала.

Шарик термометра — это часть, где помещается жидкость. Жидкость реагирует на изменение температуры поднимаясь или опускаясь по капиллярной трубке. Капиллярная трубка представляет собой узкий цилиндр по которому перемещается жидкость. Часто капиллярная трубка снабжена перепускной камерой, которая представляет собой полость, куда поступает избыток жидкости. Если не будет перепускной камеры, то после того, как капиллярная трубка наполнится, создастся достаточное давление для того, чтобы разрушить трубку, если температура будет и дальше повышаться. Шкала — это часть жидкостного термометра, с помощью которой снимаются показания. Шкала откалибрована в градусах. Шкала может быть закреплена на капиллярной трубке, либо она может быть подвижной. Подвижная шкала дает возможность ее регулировать.

Принцип работы жидкостного термометра

Принцип работы жидкостных термометров основан на свойстве жидкостей сжиматься и расширяться. Когда жидкость нагревается, то обычно она расширяется; жидкость в шарике термометра расширяется и двигается вверх по капиллярной трубке, тем самым показывая повышение температуры. И, наоборот, когда жидкость охлаждается, она обычно сжимается; жидкость в капиллярной трубке жидкостного термометра понижается и тем самым показывает понижение температуры. В случае, когда имеется изменение измеряемой температуры вещества, то происходит перенос теплоты: сначала от вещества, чья температура измеряется, к шарику термометра, а затем от шарика к жидкости. Жидкость реагирует на изменение температуры двигаясь вверх или вниз по капиллярной трубке.

Тип используемой жидкости в жидкостном термометре зависит от диапазона измеряемых термометром температур.

Ртуть, -39—600 °C (-38—1100 °F);
Сплавы ртути, -60—120 °C (-76—250 °F);
Спирт, -80—100 °C (-112—212 °F).

Жидкостные термометры с частичным погружением

Конструкция многих жидкостных термометров предполагает, что они будут висеть на стене, и вся поверхность термометра входит в соприкосновение с веществом, температура которого измеряется. Однако, некоторые виды промышленных и лабораторных жидкостных термометров сконструированы и откалиброваны таким образом, что предполагают их погружение в жидкость.

Из термометров, используемых таким образом наиболее широко применяются термометры с частичным погружением. Для того, чтобы получить точные показания с помощью термометра с частичным погружением, погружают его шарик и капиллярную трубку только до этой линии.

Термометр жидкостный с частичным погружением

Термометры с частичным погружением погружаются до отметки для того, чтобы компенсировать изменения температуры окружающего воздуха, которые могут на жидкость, находящуюся внутри капиллярной трубки. Если изменения температуры окружающего воздуха (изменения температуры воздуха вокруг термометра) вероятны, то они могут вызвать расширение или сжатие жидкости внутри капиллярной трубки. В результате на показания будет влиять не только температура вещества, которая измеряется, но и температура окружающего воздуха. Погружение капиллярной трубки до отмеченной линии снимает воздействие температуры окружающего воздуха на точность показаний.

В условиях промышленного производства часто необходимо измерять температуры веществ, проходящих по трубам или находящихся в емкостях. Измерение температуры в этих условиях создает две проблемы для прибористов: как измерить температуру вещества, если нет непосредственного доступа к этому веществу или жидкости, и как вынимать жидкостный термометр для осмотра, проверки или замены не останавливая технологического процесса. Обе эти проблемы устраняются, если применять измерительные каналы для ввода термометров.

Измерительный канал с введенным термометром

Измерительный канал для ввода термометра представляет собой канал в виде трубы, который закрыт с одного конца и открыт с другого. Измерительный канал предназначен для того, чтобы в него помещать шарик жидкостного термометра и таким образом оградить его от веществ, которые могут вызывать коррозию, отравляющих веществ, или под высоким давлением. Когда применяются измерительные каналы для ввода термометров, то теплообмен происходит в форме непрямого контакта (через измерительный канал) вещества, чья температура измеряется, и шариком термометра. Измерительные каналы представляют собой уплотнение для повышенного давления и предотвращают выход наружу жидкости, температура, которой измеряется.

Измерительные каналы делаются стандартных размеров, так что они могут использоваться с различными типами термометров. Когда термометр устанавливается в измерительный канал, то его шарик вставляется в канал, а поверх термометра накручивается гайка, чтобы закрепить термометр.

Источник: http://www.kipiavp.ru/pribori/tehnicheskiy-jidkostniy-termometr.html

Pereosnastka.ru

Обработка дерева и металла

Манометрические термометры предназначаются для измерения температуры жидких и газообразных сред в стационарных условиях в интервале от-150 до 600 °С.

Принцип действия манометрических термометров основан на изменении давления заполнителя термосистемы от температуры измеряемой среды, В зависимости от применяемого заполнителя термосистемы манометрические термометры делятся на газовые, жидкостные и конденсационные. Замкнутая система манометрического термометра, показанная на рис. 1, состоит из термобаллона, соединительного капилляра и манометрической пружины.

Изменение температуры контролируемой среды воспринимается заполнителем термосистемы через термобаллон и преобразуется в изменение давления, под действием которого манометрическая трубчатая пружина с помощью тяги, сектора и трибки перемещает стрелку относительно шкалы. Это перемещение через соответствующие устройства передается на сигнальное устройство; у термометров с пневматическим выходным сигналом — на пневматический преобразователь; у термометров с электрическим выходным сигналом — на механоэлектрический преобразователь.

В термометрах с сигнальным устройством изменение измеряемой температуры воспринимается термобаллоном и передается на манометрическую пружину, которая несколько распрямляясь, через сектор и трибку приводит в движение стрелку относительно шкалы. Вместе с показывающей стрелкой перемещается ведущий поводок с двумя подвижными поводками.

Читайте так же:  Юникредит рефинансирование кредитов

В качестве датчиков электрического сигнала используют два неподвижных предельных контакта. Один из них выдает сигнал минимального, а другой — максимального значения температуры контролируемой среды. Связь показывающей стрелки и подвижных контактов осуществляется через спиральные волоски. Установка пределов сигнализации осуществляется с помощью указателей пределов сигнализации. Когда температура достигает значения, заданного с помощью сигнальных стрелок, соответствующая контактная пара замыкается и выдается электрический сигнал. Внешнюю электрическую цепь подключают к термометру с помощью клеммной колодки.

В термометрах с пневматически выходным сигналом изменение измеряемой температуры воспринимается манометрической пружиной, которая, несколько распрямляясь, приводит в движение стрелку через трибосекторный механизм. Одновременно это изменение с помощью рычажного механизма передается на свободный конец пружины механизма обратной связи, на котором укреплена заслонка.

Рис. 1. Схема манометрического термометра

Рис. 2. Схема термометра с сигнальным устройством

Рис. 3. Схема термометра с пневматическим выходным сигналом:
1 – термобаллон; 2 – капилляр; 3 – рычажный механизм; 4, 18 – манометры; 5 – сопло; 6 — заслонка; 7 – пружина обратной связи; 8 – циферблат; 9 – стрелка; 10 – пружина манометрическая; 11 – пружина; 12 – пневмореле; 13 – термобиметапл; 14 – трибо-секторный механизм; 15, 16 – тяги; 17, 19 – поводки

Рис. 4. Схема термометров с электрическим выходным сигналом:
1 – термобаллон; 2 – капилляр; 3 – стрелка; 4 – шкала; 5 – манометрическая пружина; 6 – тяга; 7 – трибка; 8 – сектор; 9 – рычаг; 10 – флажок; 11 – меха-ноэлектрический преобразователь; 12 – контроль 0-100 мВ; 13 – выход 0,5 мА; 14 – пружина корректора нуля; 15 – пружина

Изменение зазора между соплом и заслонкой вызывает изменение давления питания воздуха в линии сопла, которое с помощью усилительного пневмореле изменяет давление выходного сигнала прибора и в механизме обратной связи. Под действием изменения давления манометрическая пружина механизма обратной связи осуществляет соответствующий поворот, воздействие которого на заслонку обеспечивает пропорциональность выходного давления ходу заслонки.

Таким образом, величина зазора между соплом и заслонкой и, следовательно, выходное давление прибора, являются мерой измеряемой температуры. Питание пневмодатчика осуществляется воздухом, очищенным воздушным фильтром под давлением, сниженным редуктором до (140 ± 14) кПа. Входное давление питания контролируется манометром, а выходное давление — манометром.

В термометрах с электрическим выходным сигналом изменение измеряемой температуры воспринимается манометрической пружиной, которая, несколько выпрямляясь, приводит в движение показывающую стрелку через сектор и трибку и механоэлектрический преобразователь. На оси сектора закреплен рычаг, к которому крепят измерительную пружину. Второй конец пружины впаян в рычаг флажка преобразователя, Измерительная пружина, растягиваясь, передает усилие к свободному концу флажка преобразователя. Перемещение флажка изменяет параметры преобразователя, в результате чего на его выходе появляется сигнал постоянного тока.

Достоинством манометрических термометров являются: возможность дистанционного измерения температуры без использования дополнительной энергии, сравнительная простота конструкции, возможность автоматической записи показаний, взрывобезопасность, нечувствительность к внешним магнитным полям.

К недостаткам относятся: относительно невысокая точность измерения, трудность ремонта при разгерметизации измерительной системы, низкая механическая прочность капилляра, небольшое расстояние дистанционной передачи показаний, значительная инерционность.

Источник: http://pereosnastka.ru/articles/naznachenie-ustroistvo-i-printsip-deistviya-termometrov

Лазерные термометры — устройство, принцип действия и применение

Есть немало промышленных отраслей, где измерять температуру удобнее всего без контакта термометра с объектом, например на сталелитейном производстве в металлургии, в транспортном техобслуживании или при ремонте газовых трубопроводов. И в быту немало таких обстоятельств: измерить температуру блюда, чашки или тела человека.

Так или иначе, есть множество ситуаций, когда в условиях высокой температуры объекта нет ничего удобнее и безопаснее, чем прибегнуть к применению портативного лазерного пирометра (лазерного термометра). Стоимость такого прибора зависит как от производителя, так и от рабочих параметров и от продавца. Сегодня его можно приобрести начиная от $10 и выше.

В отличие от контактных способов измерения температуры разнообразными термодатчиками, лазерный пирометр оснащен своего рода лазерным прицелом, так что достаточно навести лазерный луч на находящийся на расстоянии до трех метров исследуемый объект, как дальше в работу автоматически вступит пирометрический преобразователь, и пользователю остается лишь увидеть значение температуры на дисплее высокоточного инженерного прибора — все очень просто.

Главное условие успешных измерений — поверхность предмета не должна быть отражающей, как не должна быть и полностью прозрачной.

С виду лазерный термометр или пирометр похож на лазерный пистолет с экраном из какого-нибудь фантастического фильма. Но деле это просто удобная форма для прибора, который работнику удобно будет держать в руке, прибор оснащен панелью управления и жк-дисплеем, а благодаря лазерному целеуказателю, пользователь получает высокую точность наведения и быстрый результат.

Принцип измерения температуры построен здесь на анализе электромагнитного инфракрасного (теплового) излучения, интенсивно исходящего от поверхности любого разогретого объекта. Что позволяет сегодня оперативно осуществлять мониторинг и контроль температурных режимов на объектах, деталях, элементах и т.д.

В основе конструкции пирометра — детектор теплового излучения (ИК-детектор). Суть в том, что спектр и интенсивность инфракрасного излучения, исходящего от объекта в момент измерения, прямо связаны с текущей температурой его поверхности.

Электронный пирометрический преобразователь преобразует данные об абсолютном значении длины волны излучаемой в ИК-спектре энергии — в удобный для зрительного восприятия человеком на дисплее вид. Пользователь просто наводит прибор на удаленный объект, причем расстояние ограничивается размером исследуемого пятна и загрязненностью воздуха, а дальше прибор косвенным путем определяет точное значение температуры. Человеку остается нажать на кнопку, похожую на «курок» и удерживать ее для фиксации полученных данных.

Лазерному термометру свойственны следующие характеристики. Диапазон измеряемых температур — от -50 до +4000°С. Оптическое разрешение от 2 до 600. Диаметр объекта — не менее 15 мм. Скорость снятия показаний — менее одной секунды, что позволяет отслеживать температуру в динамике. Габариты прибора, как правило небольшие, он легко умещается в руке, а информация легко считывается с цифрового дисплея.

Читайте так же:  Образец производственной характеристики на электромонтера в 2020 году

В некоторых моделях есть и дополнительные функции, такие как:

сохранение информации об измерениях во встроенной памяти прибора;

нахождение минимума и максимума температуры из серии измеренных значений;

звуковой или визуальный сигнал в момент достижения температурой назначенного порога;

возможность переноса данных посредством USB на компьютер или на флешку.

Хоть для использования в быту с целью изменения температуры блюд, хоть для применения в некоторых промышленных отраслях, вроде измерения температуры трубопровода горячей воды, — подойдет недорогой лазерный пирометр.

Вообще лазерные пирометры популярны во многих отраслях: в исследовательских лабораториях, в энергетике, в пищевой промышленности, в металлургии, для проверки режимов работы электрооборудования, для обследования подшипников и двигателей внутреннего сгорания, для анализа состояния компьютерных систем, в военном, гражданском и промышленном строительстве.

Лазерные термометры (пирометры) бывают не только мобильными, но и стационарными. Стационарные широко применяются для наблюдения за состоянием объектов инфраструктуры, на рефрижераторной технике, для отслеживания условий транспортировки медикаментов и пищевых продуктов, наконец ими оснащаются пожарные бригады.

В целом, причины применения пирометров можно разделить принципиально на следующие:

объект недосягаем для контакта — для измерения температуры на удаленном, труднодоступном объекте;

объект опасен для контакта — проверка режима работы объекта, который находится под напряжением;

экспресс-мониторинг — температура поверхностей быстро меняется в процессе их исследования;

низкая теплопроводность объектов требует фиксации температуры поверхности.

Источник: http://electricalschool.info/spravochnik/eltehustr/1906-lazernye-termometry-ustrojjstvo-princip.html

Термометры. Понятие. Виды.

Термометр – это высокоточное устройство, которое предназначается для измерения текущей температуры. В промышленности, термометром измеряют температуру жидкостей, газов, твердых и сыпучих продуктов, расплавов и.т.д. Термометры особенно часто применяют на производствах, где важно знать температуру сырья для правильного протекания технологических процессов, или в качестве одного из средств контроля готовой продукции. Это предприятия химической, металлургической, строительной, сельскохозяйственной отраслей, а также сфера производства продуктов питания.

В быту, термометры могут быть использованы в различных целях. Например, существуют уличные термометры для деревянных и пластиковых окон, комнатные термометры, термометры для бань и саун. Приобрести термометры можно для воды, чая, и даже для пива и вина. Существуют термометры для аквариума, специальные термометры для почвы, и инкубаторов. В продаже имеются также термометры для морозильных камер, холодильников и погребов и подвалов.

Установить термометр, как правило, технологически не сложно. Однако, не стоит забывать, что только выполненная по всем правилам установка термометра гарантирует надёжность и долговечность его работы. Следует также учитывать, что термометр — прибор инерционный, т.е. время установления его показаний составляет около 10 — 20 минут, в зависимости от требуемой точности. Поэтому не ожидайте, что термометр изменит свои показания в тот же момент, как только он будет вынут из упаковки или установлен.

По конструктивным особенностям выделяют следующие виды термометров:

1. Жидкостный термометр

2. Манометрический термометр

В рабочем состоянии, термобаллон манометрического термометра помещается в измеряемую среду. Нагреваясь, внутри замкнутого объема термобаллона увеличивается давление, которое и измеряется манометром. Шкала манометра проградуирована в единицах температуры (градусы Цельсия). Манометрические термометры могут применяться во взрывоопасных помещениях.

3. Термометр сопротивления

Металлические термометры сопротивления изготавливаются из помещенной в электроизоляционный корпус тонкой медной или платиновой проволоки.

4. Принцип действия термоэлектрических термометров

5. Электронный термометр.

6. Электроконтактные термометры

Электроконтактные термометры изготавливаются на заказ, по техническим условиям предприятия. Такие термометры конструктивно делятся на 2 вида:

— Термометры с переменной, устанавливаемой вручную, температурой контактирования,

— Термометры с постоянной или заданной температурой контактирования. Это, так называемые термоконтакторы.

7. Термометры цифровые

8. Конденсационные термометры

9. Газовый термометр

10. Биметаллический термометр.

Биметаллический термометр составлен из двух тонких лент металла, к примеру медной и железной, при нагревании которых, их расширение происходит неодинаково. Плоские поверхности лент плотно скреплены между собой, при этом, биметаллическая система из двух лент, скручена в спираль, а один из концов такой спирали жестко закреплен. При охлаждении или нагревании спирали, ленты, изготовленные из разных металлов, сжимаются или расширяются в разной степени. Как следствие, спираль или скручивается, или раскручивается. Прикрепленный к свободному концу спирали указатель, отображает результаты измерений.

Источник: http://www.tdteplocontrol.ru/info/articles/termometri-ponyatie.htm

Механический термометр: история, описание и принцип действия

Видео (кликните для воспроизведения).

Для измерения температуры используются приборы под названием термометры. Они имеют разную конструкцию и форму, могут определить температуру тела, воздуха, воды и многого другого. Механические виды таких приборов базируются на расширении тел под действием тепла. Эти тела могут быть разной формы: газообразной, жидкой и твердой.

История

Изобретателем термометров был Галилео Галилей. Еще в 1706 году он занимался созданием астрономических и физических приборов, но основной его целью было усовершенствование термометра. Со временем он изобрел и разработал систему измерения температуры с помощью шкалы, разделенной на градусы от 0 до 100.

Механические приборы по измерению температуры появились намного позже. Такой вид термометра работает по принципу изменения металлической спирали. Приборы оснащены стрелкой и внешне похожи на стрелочные часы. Используются они на панелях автотранспорта и разнообразной спецтехнике.

Основными их преимуществами являются прочность и надежность.

Виды и их принцип работы

Принцип работы механических термометров заключается в изменении металлической спирали или ленты из биметалла и способности расширения металлических тел при нагреве. Они отличаются максимально точными данными и легкостью в использовании.

Данные механические приборы разделяются на два вида: биметаллические и стержневые.

Читайте так же:  Заявление на увольнение во время отпуска

Действие стержневых видов основывается на разнице линейного расширения двух тел, которые имеют разные температурные растяжения. Латунная трубка оказывается элементом, в котором находятся 2 спирали из сплава железа с никелем. Они приводят к сокращению расстояния, настраиваемого при регулировании в зависимости от нужного значения заданной температуры. Для того чтобы передать данные с таких приборов на дистанцию более 50 м, применяют электрические системы передач.

С их помощью прямые и угловые данные, полученные посредством работы термочувствительных элементов, превращаются в электрические сигналы.

Биметаллический градусник работает по принципу сжатия и расширения твердых тел. Они отличаются высокой прочностью, способны устоять перед температурами за границами измеряемого диапазона, применяются в промышленности.

Если температура выходит за пределы шкалы, то это значит, что прибор подвергается действию самых высоких или низких отметок.

Работает такой прибор при помощи стрелки и шкалы, с которых ведется отсчёт данных.

Биметаллические термометры бывают трех видов: спиральные, геликоид, с многоступенчатой спиралью. Спиральные имеют элементы в форме спирали. Когда они нагреваются, то приобретают способность раскручиваться, но иногда могут и закручиваться. Элемент меняется в зависимости от температуры. При ее повышении он нагревается и распрямляется, двигая стрелку в сторону увеличения данных, при снижении – наоборот, закручивается, и стрелка движется в сторону низких данных по шкале. Скручивание и раскручивание спирали происходит в соответствии с изменением температуры. Благодаря большому ходу стрелки данные о температуре очень четкие.

Спиралевидные элементы занимают мало места, поэтому используются чаще, чем стержневые с прямой формой.

Когда спиральные приборы оказываются неподходящими для применения в промышленности из-за своей формы, используют удлиненный элемент под названием геликоид. При нагревании он раскручивается и продвигает ось в область более высоких данных, а при остывании скручивается и направляет стрелку к наименьшим показателям шкалы.

У термометров с многоступенчатой спиралью принцип работы такой же, как и у унифилярной, но они имеют другое строение. В ней находится два и более концентрических витка. Она занимает еще меньше места и предоставляет больший ход стрелки, а значит, более точные данные.

Что выбрать?

Несколько советов, которые стоит брать во внимание при выборе механического термометра.

  1. При выборе обратите внимание на стоимость. Дешевый прибор наверняка отличается погрешностью в данных.
  2. Размер прибора имеет немаловажное значение, так как размер шкалы и цифр напрямую зависит от диаметра циферблата.
  3. Верхний диапазон на шкале термометра должен быть не менее 300 градусов.
  4. Производитель дорожит своей репутацией, поэтому товары от известных фирм будут отличаться качеством в лучшую сторону.

Далее вас ждет обзор механического термометра для кухни.

Источник: http://stroy-podskazka.ru/termometr/mehanicheskij/

Психрометр. Виды и работа. Применение и особенности

Психрометр – это измерительный прибор, применяемый для определения температуры и влажности воздуха. Его используют для составления метеорологических прогнозов. Это неотъемлемое оборудование метеостанций. Название прибора происходит от греческих слов «холодный» и «мерить».

Психрометры используются не только для наблюдения за погодой, но и определения оптимальных условий производственных процессов. Имея информацию о величине относительной влажности воздуха можно проводить калибровку различного промышленного оборудования, менять концентрацию компонентов для химических процессов, которые в зависимости от сырости воздуха протекают по-разному. Такие приборы часто можно встретить на складах пищевых продуктов и электроники.

Как работает психрометр

Принцип действия устройства основывается на свойстве жидкости при испарении влиять на температуру прилегающих к ней поверхностей. В приборе имеется 2 термометра. Один находится во влажной среде, а второй остается сухим. Первый контактирует со смоченной поверхностью, в качестве которой выступает губка или ткань. Прикасаясь к ней, термометр охлаждается от испаряющейся жидкости. Как следствие он показывает меньшую температуру, чем сухой прибор. Разница на двух термометрах составляет несколько градусов. Она используется для физических вычислений относительной влажности.

Самые простые психрометры это просто два спиртовых или ртутных термометра. Один из них обмотан смоченной хлопчатобумажной тканью, а второй остается сухим. Чтобы ткань оставалась влажной, в конструкции предусматривается емкость с водой, в который опускается ее конец. Хлопчатобумажные нитки впитывают жидкость и поднимают влагу вверх, поэтому ткань всегда остается мокрой пока имеется вода в резервуаре.

Чем ниже относительная влажность окружающего воздуха, тем более интенсивно испаряется вода из ткани. Естественно, быстрое испарение сильно понижает температуру термометра. На сухом воздухе разница между данными с пары термометров будет самой большой. При относительной влажности 100% температуры останутся одинаковыми.

Сняв показания с двух термометров и зафиксировав разность температуры необходимо воспользоваться специальной таблицей. По вертикали в ней отмечены показания сухого термометра, а по горизонтали разность температур. Сопоставив линии можно получить показания относительной влажности.

Табличные данные являются следствием расчета по формуле e = E-A•P(t-tc). Показатель «е» отображает упругость водяного пара в воздухе. Это является величиной абсолютной влажности воздуха. «Е» – максимально возможная упругость пара при температуре смоченного термометра. Показатель «t» температура воздуха. «А» является высчитанным коэффициентом, который напрямую зависит от термометра и скорости движения воздуха, соприкасаемого с резервуаром и колбой термометра. Показатель «P» – это давление воздуха.

Каждый классический психрометр имеет на своей поверхности напечатанную таблицу, благодаря чему данные можно сравнить сразу же не отходя от прибора. Это исключает необходимости использования расчетов. Чтобы пользоваться прибором и получить показатель относительную влажность можно даже не уметь применять формулу.

Отличие от гигрометра

Психрометр и гигрометр это приборы одинакового назначения. Они оба созданы для определения влажности. При этом устройства отличаются между собой по принципу работы. Дело в том, что гигрометр разработан специально для измерения физико-химических свойств разных веществ. Психрометры работают намного проще. Естественно, чем элементарней конструкция, тем она надежней. Именно поэтому психрометры более точные. Хотя они лишены ряда дополнительных функций, но могут использоваться в качестве эталона. Именно по психрометру проводят поверку точности многозадачного гигрометра.

Читайте так же:  Предсменные и послесменные медицинские осмотры работников в 2020 году
Виды психрометров

Описанная классическая конструкция простейшего психрометра является не единственной. На основании принципа измерения влажности по показанию сухого и влажного термометра были разработаны несколько психрометров:

  • Августа.
  • Асмана.
  • Дистанционный.
Августа

Этот прибор также называют стационарный психрометр. Он является самой первой и простой конструкцией. Устройство представляет собой корпус, на котором неподвижно закреплено 2 термометра. От одного из них отходит батистовая ткань, опущенная в резервуар с водой. Это безотказное оборудование, дающее весьма точные результаты, но требующее периодического слежения за наличием воды в резервуаре.

Недостаток данного прибора состоит в том, что интенсивность испарения зависит от скорости передвижения воздуха. То есть, если ткань термометра будет обдуваться, то произойдет значительное охлаждение, превышающее естественное. Как следствие показания станут искажаться. В связи с этим устройство лучше размещать в местах, где на его точность не повлияют сквозняки.

Асмана

Данный прибор известен как аспирационный психрометр. Это немного более сложное устройство. Оба его термометра скрыты в корпусе, защищающем их от повреждения и теплового воздействия от окружающих поверхностей. Они принудительно обдуваются воздухом с помощью встроенного вентилятора, что гарантирует одинаковый фиксированный поток. Это исключает зависимость показаний от порывов ветра, и выравнивает условия. Работающий вентилятор двигает воздух со скоростью 2 м/сек.

Это самый точный вид психрометров. Как и в приборах Августа в их конструкции используются термометры со стеклянной колбой, поэтому устройство требует аккуратного обращения. Спрятанные термометры все равно могут разбиться, и тогда прибор придет в негодность.

Дистанционный

Это промышленные психрометры, которые позволяют измерять влажность воздуха обычно применяя термометры сопротивления. Такие устройства позволяют определять относительную влажность и передавать результаты измерений на большие расстояния. То есть, исключается необходимость подходить к прибору и непосредственно снимать показания температуры.

Дистанционные психрометры бывают:
  • Манометрические.
  • Электрические.

Первый прибор имеет в своей конструкции манометрический термометр. Более востребованными являются электрические психрометры. В них встроен термометр, сопротивления, термопары, термисторы и т.п. Несмотря на техническую сложность, в основе таких устройств лежит тот же принцип разности показаний температуры сухого и мокрого датчика.

Обслуживание бытового психрометра

В качестве бытовых психрометров обычно предлагается использовать классические стационарные приборы. В идеале проводить заправку их резервуара дистиллированной водой. При ее отсутствии можно использовать кипяченую воду. Кипячение позволяет уменьшить концентрацию в жидкости солей, забивающей капилляры тканевой ленты и ускоряющей ее пересыхание. Чтобы психрометр работал точно без возможной погрешности, лучше использовать всегда только дистиллированную воду. Тогда лента не напитает соль, поэтому всегда будет сохнуть правильно.

Источник: http://tehpribory.ru/glavnaia/pribory/psikhrometr.html

Ртутный термометр технический

Ртутный термометр — это прибор для измерения температуры, в котором в качестве жидкости используется ртуть, единственный жидкий метал. Когда ртуть нагревается или охлаждается, то она расширяется или сжимается с устойчивым соотношением в широком диапазоне температур.

Технический ртутный термометр угловой

Уровень ртути легко считывается в стеклянных капиллярных трубках, так как ртуть не смачивает и не прилипает к трубке в отличие от других жидкостей. Причина этого кроется в том, что молекулы ртути притягиваются к друг другу сильнее, чем они прилипают к стеклу или другим материалам.

Единственным недостатком ртути является то, она опасна для здоровья и отравляет окружающую среду. Если ртутный термометр сломается, то необходимо строго следовать соответствующим процедурам, принятым на предприятии, в отношении утилизации и сбора пролившейся ртути.

Ртуть, образующая выпуклый мениск

Мениск — это искривленная поверхность столба жидкости. Выпуклый мениск закруглен, и его середина выше чем края. Когда показания снимаются с жидкостного ртутного термометра, то температура будет соответствовать линии на шкале, которая будет касаться вершины мениска.

Ртуть нельзя использовать для измерения температур ниже -38,83°C, так как это температура замерзания ртути. Однако, можно расширить диапазон измеряемых температур с использованием ртути и ниже -38,83°C, если добавить в ртуть другую жидкость, например, таллий и создать ртутный сплав. Как и чистая ртуть, этот сплав ртути будет сжиматься и расширяться с устойчивым соотношением. Уровень сплава также легко виден в стеклянных капиллярных трубках ртутного термометра.

Источник: http://www.kipiavp.ru/pribori/tehnicheskiy-rtutniy-termometr.html

Научно-популярный метеорологический проект

Метеоролог и я

Термограф

Все мы знаем, что температура воздуха меняется в течение суток. Классический суточный ход представляет собой повышение температуры днём и понижение её ночью.

Однако он может изменятся в виду разных факторов, например, при прохождении атмосферных фронтов. В таких случаях температура воздуха ночью может оказаться выше, чем днём. Кроме того, она может значительно изменяться между сроками измерения. Поэтому для более точного суточного хода важно постоянное фиксирование температуры воздуха. Такие измерения позволяет проводить прибор под названием термограф.

Термограф метеорологический М-16АС позволяет непрерывно фиксировать изменения температуры воздуха с точностью до 1°С. В зависимости от температурного режима территории, на которой используется прибор, можно выбрать один из следующих диапазонов измерения:

  • от -45 до 35 °С;
  • от -35 до 45 °С;
  • от -25 до 55 °С.

Конструктивно термограф очень похож на гигрограф. Однако, чувствительным датчиком является биметаллическая пластина (3).

Биметаллическая пластина — это слегка изогнутая двухслойная пластина из разных металлов (рис. 1). Благодаря тому, что каждый металл имеет свою степень расширения при нагревании (или степень сжатия при охлаждении), пластина изгибается.

Приёмная часть термографа состоит из биметаллической пластины (рис. 2), один конец которой неподвижно крепится к кронштейну (5). Другой конец с помощью передаточных рычагов связан со стрелкой (4).

Читайте так же:  Досрочная пенсия госслужащим при сокращении

Регистрирующая часть, аналогично другим самописцам, состоит из стрелки (4), на конце которой закреплено перо, и часового механизма с барабаном (6). Полный оборот барабан совершает за 26 ч. При изменении температуры воздуха изменятся изгиб пластины. Её деформация с помощью передаточного механизма преобразуется в движение стрелки. При повышении температуры стрелка движется вверх, при понижении – вниз.

Все механизмы прибора смонтированы на плате (2). Регистрирующая часть находится в пластмассовом корпусе (1), а приёмная вынесена наружу. Для защиты биметаллической пластины от механических повреждений вокруг неё смонтированы защитные дуги (7).

Для того, чтобы вести правильный отсчёт температуры, перо стрелки необходимо установить на деление, соответствующее текущей температуре воздуха. Для этого используют установочный винт (8).

Кроме фиксирования суточного хода температуры воздуха, термограф имеет ещё одну важную функцию: при отсутствии на метеостанции рабочих минимальных и максимальных термометров, прибор может быть использован для определения минимальной и максимальной температуры за сутки.

Источник: http://meteo59.ru/book/pribory-i-nablyudeniya/termograf.php

Биметаллический термометр

Биметаллический термометр — это прибор для измерения температуры, принцип работы которого основан на расширении и сжатии твердых тел.

Прочность биметаллических термометров делает их приемлемыми для промышленного применения. Более того, биметаллические термометры способны противостоять температурам за пределами диапазона измерений.

Выход за пределы диапазона измерений означает, что термометр подвергается воздействию температур, которые либо выше, либо ниже самых высоких или самых низких показаний температуры на шкале термометра.

Схема биметаллического термометра

Что касается недостатков, то металлы, из которых изготавливаются биметаллические элементы термометров подвержены одному существенному дефекту, который отсутствует в жидкостных системах или манометрических системах. Так металлы могут закаливаться при воздействии температур свыше 1000°C в течение длительного времени. Закаливание биметаллических элементов понижает их чувствительность к изменениям температуры. Когда это происходит, то элемент не будет расширяться и как обычно при нагревании и сжиматься как обычно при охлаждении. Поэтому при повышении температуры стрелка не будет двигаться пропорционально повышению температуры. Когда температура будет понижаться, то стрелка не будет перемещаться пропорционально понижению температуры. Биметаллический элемент с закаленным элементом может слабо реагировать на повышение температуры и сильно реагировать на понижение температуры.

Принцип работы биметаллического термометра

У биметаллического термометра есть стрелка и шкала, с которой ведется отсчет показаний. Трубка биметаллического термометра служит в качестве контейнера, куда помещается для стержня и биметаллического элемента.

Биметаллический стержень (стержень, изготовленный из двух различных металлов, скрепленных вместе) может использоваться в качестве компенсатора в манометрических системах. Биметаллический элемент биметаллического термометра сходен с биметаллическим стержнем. Он также изготовлен из двух различных металлов, которые сжимаются или расширяются с различной степенью при изменениях температуры. Металл верхней части при нагревании расширяется больше, чем нижний, поэтому стержень изгибается в направлении, показанном на рисунке ниже. Металл наверху также сильнее сжимается при охлаждении и заставляет стержень изгибаться в противоположном направлении.

Биметаллический элемент реагирует на изменения температуры

Виды биметаллических термометров

Спиральный

Часто биметаллические элементы биметаллических термометров имеют форму спирали. Большинство элементов биметаллических термометров должны раскручиваться при нагревании. Однако это вовсе не обязательно. Некоторые, наоборот закручиваются при нагревании. Независимо от конструкции, направление движения элемента термометра будет известно и стрелка покажет изменения температуры.

Спиральный элемент реагирует на изменения температуры

Элемент, показанный на рисунке выше должен раскручиваться при нагревании. Когда этот спиральный элемент нагревается, то в ответ на повышение температуры он старается распрямиться. Подобное движение спирального элемента двигает стрелку в сторону более высоких показаний по шкале. Когда температура понижается, то спираль закручивается и стрелка двигается в сторону более низких показаний. Скручивание и распрямление спирального элемента пропорционально изменениям температуры Спиральные элементы используются в биметаллических термометрах вместо элементов в виде стержня, так как спиральный элемент занимает меньше места, чем элемент прямой формы. Кроме того, спиральный элемент обеспечивает больший ход стрелки, что в свою очередь, означает большую чувствительность к изменениям температуры.

Геликоид

Иногда спиральные элементы оказываются слишком плоскими и широкими, чтобы их можно применять в промышленности. Например, измерение температуры технологической жидкости, проходящей по большой трубе достаточно затруднено, так как потребуется датчик достаточно большой длины, чтобы он соприкасался с жидкостью. Для таких измерений температуры биметаллические термометры должны иметь удлиненный или длинный спиральный элемент. Удлиненный спиральный элемент носит название пространственной спирали или геликоида. Когда пространственная спираль нагревается, то она в результате раскручивается. Подобное раскручивание двигает ось, которая в свою очередь, передвигает стрелку по шкале в сторону более высоких показаний. При охлаждении пространственная спираль скручивается и двигает стрелку в сторону более низких показаний.

Геликоид реагирует на изменения температуры

С многоступенчатой спиралью

Некоторые биметаллические термометры используют многоступенчатые спирали. Многоступенчатые пространственные спирали состоят из двух или более концентрических витков (витков внутри других витков), но тем не менее, это один биметаллический элемент. Многоступенчатая пространственная спираль работает по такому же принципу, как и унифилярная спираль. Она раскручивается при увеличении температуры и скручивается при понижении температуры. Многоступенчатая пространственная спираль занимает меньше места чем унифилярная спираль, но она способна обеспечить больший ход стрелки, чем унифилярная спираль аналогичного размера. По этой причине многоступенчатые пространственные спирали используются вместо унифилярных спиралей для измерений температуры внутри очень узких труб, или там, где нет места для погружения биметаллического термометра с более длинной унифилярной спиралью.

Видео (кликните для воспроизведения).

Источник: http://www.kipiavp.ru/pribori/bimetallicheskiy-termometr.html

Устройство и работа термометра
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here